
 
ISSN NO:2720-4030                                                    Volume 42 May 2025                              
 

85 
https://periodica.com 

Asymptotic Inference for Dependent Right-Censored Data 

via Markov Models 
 

Dushatov N.T. 

Almalyk branch of Tashkent State Technical University named after Islam Karimov, Almalyk, Uzbekistan 

 E-mail: n_dushatov@rambler.ru 

A B S T R A C T  A R T I C L E I N F O 

In survival analysis and reliability theory, the assumption of 

independent lifetimes is often violated in real-world systems. This 

paper develops a version of the central limit theorem (CLT) for right-

censored lifetime data in which the failure times follow a first-order 

Markov process with a geometric transition structure. We provide 

theoretical justification for the asymptotic normality of a functional 

of the Kaplan-Meier estimator under these dependent conditions, 

derive the variance of the limiting distribution, and validate our 

findings with simulation studies. 
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1. Introduction 

Right-censoring is a common feature in survival and reliability data [4-5,7]. Traditional inference 

methods, including the Kaplan-Meier (KM) estimator [4] and associated asymptotic results, rely on the 

assumption that the lifetimes are independent and identically distributed (i.i.d.). However, in many applied 

settings — such as repeated measures, clinical trials with shared environments, or systems with sequential 

dependency — lifetimes may exhibit temporal dependence. 

In this paper, we consider lifetimes forming a stationary first-order Markov chain with a geometric 

transition structure [3,7]. We study the behavior of the KM estimator in this context and prove a central limit 

theorem (CLT) for functionals of the estimator. Our results generalize classical results for i.i.d. censored data 

and offer a framework for analyzing dependent right-censored data. 

2. Model 

Let ( , )i iX Y  be a sequence of non-negative random variables representing lifetimes and censoring time, 

respectively. We observe min( , )i i iZ X Y=  and ( )i i iI X Y =  , where ( )I A  is the indicator of event 

A  [4-5,7]. 

Assumptions: 

1. The sequence { }iX  forms a stationary first-order Markov chain with geometric transition probabilities 

[2]: 
'

1( ' ) (1 ) , 0 1.
t t

i iP X t X t   
−

+ = = = −    

2. The censoring variables { }iY  are i.i.d. and independent of { }iX .  

3. The joint process {( , )}i iZ   is stationary and ergodic [2,7].  
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We are interested in functionals of the Kaplan – Meyer estimator ˆ ( )nS t   and in establishing their 

asymptotic distribution under the above dependence structure. 

3. Main results 

Let :[0, ] R  →  be a bounded measurable function, and consider the functional: 

0

ˆ( )( ( ) ( ))n nU n t S t S t dt



= − , where ( ) ( )S t P X t=   is the true survival function [5]. 

Theorem 1 (CLT under Markov Dependence). Under Assumptions 1-3, as n→ , we have  

2(0, )
d

nU N → , 

where 
2  is a functional depending on the transition structure of the Markov chain and the censoring 

distribution.   

Proof of theorem 1. Let 1{( , )}n

i i iZ  =  denote the observed right-censored data, where iX  is the failure time, 

iY  the censoring time, and min( , )i i iZ X Y= , ( )i i iI X Y =  . Assume the conditions stated in Section 2 

hold: { }iX  is a stationary first-order Markov chain with geometric transitions,  iY  is i.i.d. and independent 

of { }iX , and {( , )}i iZ   is stationary and ergodic.   

We study the asymptotic distribution of the functional: 

0

ˆ( )( ( ) ( ))n nU n t S t S t dt



= − , 

where ˆ ( )nS t  is the Kaplan-Meier estimator and ( )S t  is the true survival function. 

Step 1. Martingale Decomposition of the Kaplan – Meier Estimator 

The Kaplan-Meier estimator ˆ ( )nS t  can be represented as: 

( ):

ˆ ( ) 1 ,
i

i
n

i Z t i

d
S t

r

 
= − 

 
  

where id  is the number of failures at time ( )iZ , and ir  is the number at risk just before ( )iZ . This product 

form leads to a representation in terms of the Nelson – Aalen estimator and martingale terms [1].  

Let ( )t  be the cumulative hazard function, and define the estimator ˆ ( )n t . Then 

( )ˆ ˆ( ) exp ( ) ,n nS t t= −  

and its fluctuation can be approximated by the fluctuation of ˆ ( )n t . Spectifically, under suitable conditions: 

( )ˆ ( ) ( ) ( ) ( ) ,n n nn t t M t R t −  = +  

where ( )nM t  is a square-integrable martingale and ( ) 0nR t →  in probability uniformly on [0, ] .  

Thus, we can write 

0

( ) ( ) ( ) (1) .n n pU n t S t M t dt o



 − +  

Step 2. Central Limit Theorem for the Martingale 

To derive the asymptotic distribution of nU , it suffices to show that the integral of ( )nM t  against ( ) ( )t S t  

converges in distribution to a Gaussian variable.  

Define the stochastic process 
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0

( ) ( ) ( ) ( ) .n nU t t S t M t dt



=   

We use a martingale central limit theorem (CLT) suitable for weakly dependent sequences – in particular, the 

Kipnis-Varadhan or Hermdorf-type results for additive functionals of Markov processes. 

Since { }iX  forms a geometrically ergodic Markov chain, it satisfies strong mixing conditions (e.g.,  −  

mixing with exponential decay) [2,7], which are sufficient for such martingale CLTs to hold. 

Let ( )F , :i j jZ j i =   denote the filtration generated by the observed data up to time i . Then ( )nM t  is 

adapted to this filtration, and the sequence of martingale differences has conditional variances satisfying a 

Lindeberg-type condition due to the boundedness of  , the integrability of S , and the geometric ergodicity. 

Step 3. Asymptotic Variance 

The asymptotic variance 
2  is given by 

2 2

0 0

lim [ ] ( ) ( ) ( ) ( ) ( , ) ,n
n

E U s t S s S t s t dsdt

 

   
→

= =    

where ( , )s t  is the covariance kernel of the limiting Gaussian process corresponding to ( )nM t . This kernel 

incorporates the dependence structure induced by the Markov chain and depends on the transition matrix P  

and the stationary distribution of iT . The explicit form of ( , )s t  is generally not tractable, but it can be 

consistently estimated from the observed data under the mixing and stationary assumptions.  

We conclude that ( )20, ,
d

nU N →  which completes the proof.  

4. Simulation study 

We simulate 1000 sample of size 500n = , where lifetimes iX  follow a geometric Markov chain with 

0,6p =  and censoring variables ( 0,05)iY Exp  =  [1]. We compute nU  for each sample and construct 

a histogram of the results [1,8-9].   

 
5. Conclusion 

We have shown that the central limit theorem can be extended to functionals of the Kaplan-Meier estimator 

when the lifetimes follow a dependent structure modeled by a geometric Markov chain. This result enhances 

the scope of nonparametric inference in survival analysis, particularly in dependent data settings. Future work 

may consider higher-order dependence, covariate inclusion, or adaptive estimation procedures. 
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